

Module 3: Descriptive Statistics

The Applied Research Center

Module 3 Overview

- Measures of Central Tendency
- Measures of Variability
- Frequency Distributions
- Running Descriptive Statistics

Measures of Central Tendency

Three measures of central tendency are available

- The Mean
- The Median
- The Mode
- Unfortunately, no single measure of central tendency works best in all circumstances
 - Nor will they necessarily give you the same answer

Example

- SAT scores from a sample of 10 college applicants yielded the following:
 - Mode: 480
 - Median: 505
 - Mean: 526
- Which measure of central tendency is most appropriate?

The Mean

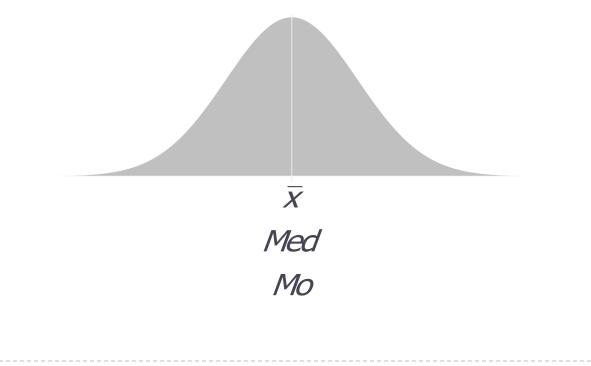
- The mean is simply the arithmetic average
- The mean would be the amount that each individual would get if we took the total and divided it up equally among everyone in the sample
- Alternatively, the mean can be viewed as the balancing point in the distribution of scores (i.e., the distances for the scores above and below the mean cancel out)

The Median

- The median is the score that splits the distribution exactly in half
- 50% of the scores fall above the median and 50% fall below
- The median is also known as the 50th percentile, because it is the score at which 50% of the people fall below

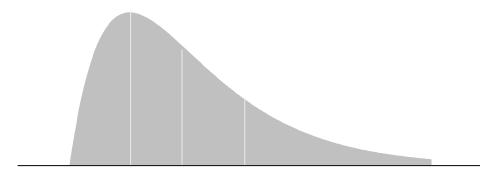
Special Notes

- A desirable characteristic of the median is that it is not affected by extreme scores
- Example:
 - Sample 1: 18, 19, 20, 22, 24
 - Sample 2: 18, 19, 20, 22, 47
- Thus, the median is not distorted by skewed distributions


The Mode

- The mode is simply the most common score
- There is no formula for the mode
- When using a frequency distribution, the mode is simply the score (or interval) that has the highest frequency value
- When using a histogram, the mode is the score (or interval) that corresponds to the tallest bar

Distribution Shape and Central Tendency


 In a normal distribution, the mean, median, and mode will be approximately equal

Skewed Distribution

In a skewed distribution, the mode will be the peak, the mean will be pulled toward the tail, and the median will fall in the middle

Mo Med \overline{X}

Choosing the Proper Statistic

Continuous data

- Always report the mean
- If data are substantially skewed, it is appropriate to use the median as well

Categorical data

- For nominal data you can only use the mode
- For ordinal data the median is appropriate (although people often use the mean)

Example

- SAT scores from a sample of 10 college applicants yielded the following:
 - Mode: 480
 - Median: 505
 - Mean: 526
- Which measure of central tendency is most appropriate?

Measures of Variability

- The fluctuation of scores about a central tendency is called "variability."
- We can use measures of variability to compare two sets of scores.
- Although the means may be the same, the distribution may be different.
- Measure of Variability
 - Range
 - Standard Deviation
 - Variance

Range

- Range is the distance between two extreme scores.
- It informs us about the dispersion of our distribution.
- The larger the range the larger the dispersion from the mean value.
- Although the mean of the scores of two distributions can be identical their ranges may be different.

Drawbacks to the Range

- Good preliminary measure, but one single extreme value can influence the range significantly.
- The calculation of the range is derived from the highest and lowest values and doesn't tell us anything about the variability of the different values.

Standard Deviation

- Defined as the variability of the scores around the mean
- Each score in a distribution varies from the mean by a greater or lesser amount, except when the score is the same as the mean.
- Deviations from the mean can be noted as either positive or negative deviations from the mean.
- The average of these deviations would equal "zero."

Standard Deviation (cont'd)

Variance

The variance and the closely-related standard deviation are measures of how spread out a distribution is.

Frequency Distribution Tables

Overview

- After collecting data, researchers are faced with pages of unorganized numbers, stacks of survey responses, etc.
- The goal of descriptive statistics is to aggregate the individual scores (datum) in a way that can be readily summarized
- A frequency distribution table can be used to get "picture" of how scores were distributed

Frequency Distributions

- A frequency distribution displays the number (or percent) of individuals that obtained a particular score or fell in a particular category
- As such, these tables provide a picture of where people respond across the range of the measurement scale
- One goal is to determine where the majority of respondents were located

When To Use Frequency Tables

- Frequency distributions and tables can be used to answer all descriptive research questions
- It is important to always examine frequency distributions on the IV and DV when answering comparative and relationship questions

Three Components of a Frequency Distribution Table

Frequency

the number of individuals that obtained a particular score (or response)

Percent

 The corresponding percentage of individuals that obtained a particular score

Cumulative Percent

 The percentage of individuals that fell at or below a particular score (not relevant for nominal variables)

Example

- What are the ages of students in an online course?
- Are students likely to recommend the course to others?
- Step I: Input the Data into SPSS

Age	Recommend
31	2
26	3
32	4
37	5
18	4
31	5
38	4
49	2
35	4
37	3
43	4
41	5
49	4
40	2

- Step 2: Run the Frequencies
- Analyze \rightarrow Descriptive Statistics \rightarrow Frequencies
- Move variables to the Variables box (select the variables and click on the arrow).
- Click OK.

Example

Frequency distribution showing the ages of students who took the online course

Aae

Hgc							
Frequency		Percent Valid Percent		Cumulative Percent			
Valid	18.00	1	7.1	7.1	7.1		
	26.00	1	7.1	7.1	14.3		
	31.00	2	14.3	14.3	28.6		
	32.00	1	7.1	7.1	35.7		
	35.00	1	7.1	7.1	42.9		
	37.00	2	14.3	14.3	57.1		
	38.00	1	7.1	7.1	64.3		
	40.00	1	7.1	7.1	71.4		
	41.00	1	7.1	7.1	78.6		
	43.00	1	7.1	7.1	85.7		
	49.00	2	14.3	14.3	100.0		
	Total	14	100.0	100.0			

Abraham S. Fischler School of Education

Student responses when asked whether or not they would recommend the online course to others

Recommend

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Probably Would Not	3	21.4	21.4	21.4
	May or May Not	2	14.3	14.3	35.7
	Probably Would	6	42.9	42.9	78.6
	Definitely Would	3	21.4	21.4	100.0
	Total	14	100.0	100.0	

Most would recommend the course

Running Descriptive Statistics

Example

Are there differences in the anxiety levels of students who have had statistics before versus students who have never had statistics?

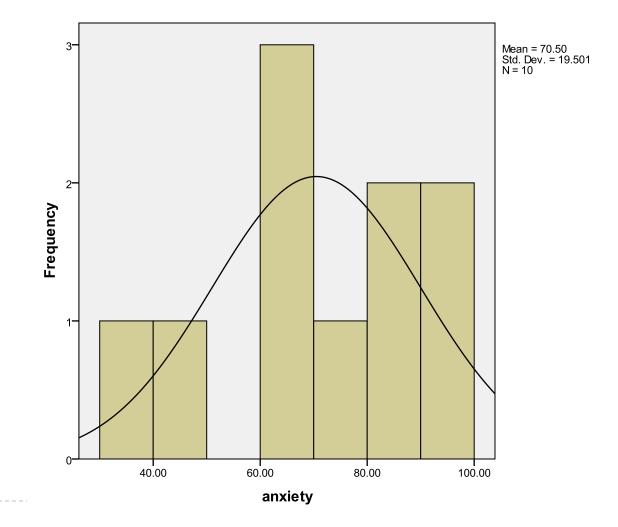
Step I: Input the data into SPSS

Stats History	Anxiety Score
I	95
I	85
I	65
I	90
I	85
2	65
2	45
2	35
2	75
2	65

Step 2: Run the descriptive statistics

- Analyze \rightarrow Compare Means \rightarrow Means
- Anxiety = Dependent List
- Stats History = Independent List
- Click Options
 - Move Median over
 - Move Minimum over
 - Move Maximum over
- Click Continue
- Click OK

Report


anxiety

statshist	Mean	N	Std. Deviation	Median	Minimum	Maximum	Range	Variance
no	84.0000	5	11.40175	85.0000	65.00	95.00	30.00	130.000
yes	57.0000	5	16.43168	65.0000	35.00	75.00	40.00	270.000
Total	70.5000	10	19.50071	70.0000	35.00	95.00	60.00	380.278

- Step 3: Create a Histogram for Anxiety with a normal curve option
 - ▶ Graphs \rightarrow Legacy Dialogs \rightarrow Histogram
 - Variable = anxiety
 - Check the "Display normal curve" check box
 - Click Ok

Histogram for Anxiety

Step 4:Write up the results

Descriptive statistics revealed that students who had previous experience with statistics (M = 57.00, SD = 16.43) had lower anxiety at the beginning of the semester than students who did not have any previous experience with statistics (M = 84.00, SD = 11.40).

Module 3 Summary

- Measures of Central Tendency
- Measures of Variability
- Frequency Distributions
- Running Descriptive Statistics

Review Activity and Quiz

- Please complete the Module 3 Review Activity: Descriptive Statistics Terminology located in Module 3.
- Upon completion of the Review Activity, please complete the Module 3 Quiz.
- Please note that all modules in this course build on one another; as a result, completion of the Module 3 Review Activity and Module 3 Quiz are required before moving on to Module 4.
- You can complete the review activities and quizzes as many times as you like.

Upcoming Modules

- Module I: Introduction to Statistics
- Module 2: Introduction to SPSS
- Module 3: Descriptive Statistics
- Module 4: Inferential Statistics
- Module 5: Correlation
- Module 6: *t*-Tests
- Module 7: ANOVAs
- Module 8: Linear Regression
- Module 9: Nonparametric Procedures

